
Kshitij Sachan Brown University

Reinforcement Learning for Solving
LongHorizon Robot Problems

Introduction
Reinforcement learning (RL) is a subfield of
machine learning in which agents select ac
tions to maximize their reward. Just as a
human slowly learns the right way to kick
a soccer ball because they get a thrill from
scoring a goal, or a dog learns the right way
to beg to more frequently obtain a treat, RL
agents modify their behavior to gain more
reward. RL has demonstrated success in
domains ranging from robot manipulation to
video games. The most challenging aspect
of RL is that, in many cases, reward only fol
lows after a very long sequence of actions—
for example, obtaining a bachelor’s degree
after four years of completing assignments.
Learning in such delayed reward situations
(known as longhorizon problems) is fun
damentally hard; there is simply no way
around it.
Hierarchical RL algorithms decompose

longhorizon tasks into smaller subgoals—
like completing a course, or finishing junior
year—so that, at a high level of abstraction,
the agent need make only a few succes
sive correct choices before receiving its re
ward. This simplifies the task to: 1) find
ing the right subproblems, 2) learning solu
tions (often called skills) to each subprob
lem, and 3) sequencing skills to solve the
entire task. Deep Skill Graphs (DSG) is an
algorithm that addresses all three steps [1].
DSG has been successful on navigation

tasks, in which the agent must simply move
through space, but my project involved ap
plying DSG to manipulation tasks, where
the robot must use its gripper to modify the
world around it. The specific task I was try
ing to solve required pushing a hockey puck
to a target location on a table using a simu
lated Sawyer robot arm (Figure 1).
Sawyer is significantly harder than the

previous maze navigation tasks DSG was
applied to because of complex robot arm
puck interactions. To push the puck to the
left, the robot arm must get to the right of the
puck without disturbing the puck’s position;
this is exactly the sort of longhorizon plan
ning that is difficult for traditional RL algo
rithms! Therefore, solving the Sawyer task
would be a substantial breakthrough in the
RL literature.

Figure 1: The Sawyer robot (dark red) pushes
the puck (blue) to a target location (orange dot).

Applying DSG directly to the Sawyer do
main does not work. In fact, it doesn’t learn
a single skill. I applied two different ap
proaches to attack this problem: improving
the parts of DSG that learn skills and better
reusing training data across skills.

Improving Algorithm to Learn Skills

The first task was learning a single skill (a
sample skill might be pushing the puck to a
corner). However, this requires hundreds of
correct actions in a row, just the problem we
were trying to avoid! I approached this by
modifying the agent’s exploration algorithm.
Most RL algorithms begin by taking random
actions (i.e. exploring); once an agent re
ceives positive reward, that behavior is re
inforced. I added several parameters that
increased the randomness of initial actions

1



Kshitij Sachan Brown University

but slowly decreased the randomness once
the skill was somewhat reliable.
After learning a single skill, the next task

was chaining together different skills. A
challenge I haven’t mentioned yet is deter
mining what skills can be executed from
where. For example, a student can only ex
ecute the skill “complete junior year” when
they are a junior.
DSG usesmachine learning to identify the

valid start states (also known as the initia
tion set) for each skill. The issue is that the
initiation set can change as the skill is being
learned. To account for the changing skill, I
made the process of learning initiation sets
more sophisticated. First, I modified DSG to
pause training the initiation set until the skill
had stabilized. Second, I used data from
nearby skills to train the initiation set of the
current skill.
Once DSG was able to begin building

a skill graph for Sawyer, the next chal
lenge was reducing training time. Build
ing a complete skill graph took about three
days of training time. The bottleneck was
an inefficient use of training samples: most
episodes fail to reach the goal state, so the
agent learns nothing from those samples.
A RL technique called goalconditioning

enables more efficient learning with limited
data. Suppose the algorithm is targeting
state X but reaches state Y. Rather than in
terpreting this as a failure to reach X, goal
conditioning treats this as a successful at
tempt to reach Y. Every episode becomes
a positive example for some target state. I
helped implement a technique called Hind
sight Experience Replay that uses goal
conditioning.

Reusing Data Across Skills
Another, more ambitious, technique to learn
with limited data is reusing the same data
to train different skills. Many of the skills for
Sawyer overlapped (moving the robot arm

from one region of the table to another might
intersect the trajectories of several other
skills). Therefore, the training data collected
from one skill could be used to train other
skills, saving training time. This is known as
offpolicy learning.
As an analogy, suppose you want to be

come a professional football player, but the
fields are occupied (limited training time).
The next best thing is watching professional
football games (offpolicy learning).
Unsurprisingly, I found that offpolicy

learning alone was not sufficient to train re
liable skills; it would be hard to become a
professional football player by only watch
ing others play. However, pretraining a skill
with offpolicy data and then training it nor
mally (watching others play and then prac
ticing) also led to poor results. Therefore,
I focused on the following questions, in the
hopes that the findings would help me re
duce DSG’s training time:
1. How close do the original and offpolicy

goal have to be? Does watching rugby
help more with football than watching
swimming?

2. Are there certain domains for which off
policy learning is more or less success
ful? Is it easier to learn football than vol
leyball by watching?

To better understand the preliminary
Sawyer results, I branched out to three other
robot domains: Point, Swimmer, and Ant,
in order from easiest to hardest. For each
robot, a model agent was trained to target
a goal. Then, offpolicy agents were initial
ized with the model agent’s policy and then
trained to target goals in the vicinity of the
original target. The offpolicy agents were
compared with a baseline that trained di
rectly on the offpolicy targets.
For the simpler domains such as Point

and Swimmer, the offpolicy runs performed
better for all test goals. For the more com
plex Ant domain, however, the offpolicy

2



Kshitij Sachan Brown University

was better than the baseline when the off
policy goal was close to the pretrained goal
but significantly worse than the baseline
when the offpolicy goal was far away from
the pretrained goal. This was consistent
with the preliminary findings in the Sawyer
domain and suggests that in more complex
domains, the agent can fail to recover from
bad initializations. Therefore, a skill should
only train on offpolicy data if the offpolicy
target is close to the skill’s target (i.e. watch
ing golf to learn to play football can make
you a worse football player!).
Applying these findings to DSG is still an

open problem because there is no obvious
distance metric to measure how close to
gether two goals are. In the Sawyer domain,
even though the puck locations for two goals
might be close in the Euclidean sense, the
robot arm might have to take a drastically
different trajectory (such as around the puck
before pushing) to reach that goal.

Results
Even without the offpolicy training, there
were significant updates to DSG. To evalu
ate the success of these updates, I trained
DSG for 3,000 episodes of 1,200 steps to
populate the skill graph. Then, I randomly
sampled five goal states and tracked DSG’s
success rate of reaching each goal over 250
episodes. These results were compared to
a baseline of goalconditioned RL without
DSG.
DSG performs significantly better than the

baseline, stateoftheart goalconditioned
algorithm, reaffirming how challenging
Sawyer is (Figure 2). Further, the upward
trend suggests that DSG’s success rate
would increase with more training time
(experiments were limited to 250 episodes
due to computational constraints).
The results are especially promising be

cause DSG only receives a sparse reward
(a binary reward indicating success or fail

Figure 2: DSG learning curve (shaded region is
standard deviation over different goals)

ure). I was unable to find any comparisons
in the literature which are successful on the
Sawyer robot domain with a sparse reward.
In fact, DSG performs as well as stateof
theart algorithms that receive a much eas
ier dense reward, which gives the agent a
reward based on how far it is from the goal.
There is still room for improvement: if the

skill graph covered the entire state space,
we would expect a success rate near one.
The current bottleneck is likely that a few
skills have low success rates. Work is cur
rently being done on prioritizing the training
time of different skills to encouragemore ex
ecutions of weak skills.

Future Work
DSG gives agents the power of abstrac
tion. The success of DSG in the Sawyer
domain suggests that it will be a promising
approach for a myriad of RL problems. Fu
ture work will explore using DSG to solve the
Atari game Montezuma’s Revenge, a holy
grail longhorizon problem in artificial intelli
gence.

References
[1] A. Bagaria et al. “Skill Discovery for Ex

ploration and Planning using Deep Skill
Graphs”. In: 2020.

3


